

Asthma Clinical update

Dr Andy Turnbull Consultant in Paediatric Respiratory Medicine Complex Asthma service lead Great Ormond Street Hospital for Children

Clinical guideline updates

New updates since 2023

- Global Initiative for Asthma (GINA) annual report (May 2024)
- Incorporating guidance on difficult-to-treat and severe asthma

Updates in last 3 years

- GINA difficult-to-treat and severe asthma short guide (2023)
- ERS clinical practice guidelines for the diagnosis of asthma in children aged 5-16 years (2021)

Anticipated updates

• BTS/SIGN/NICE joint guideline for the diagnosis, monitoring and management of chronic asthma (expected publication date: Nov 2024)

NICE Mealth and Care Excellence Asthma: diagnosis, monitoring and chronic asthma management

In development [GID-NG10186] Expected publication date: 27 November 2024 Register as a stakeholder

This guideline is being developed jointly by NICE, the Scottish Intercollegiate Guidelines Network (SIGN) and the British Thoracic Society (BTS).

Guideline scope

- Joint update to NICE (2017) and BTS/SIGN (2019) guidelines
- Children, young people, adults
- Updated evidence review and combined recommendations:
 - Diagnosis
 - Pharmacological treatment
 - Monitoring

National Bundle of Care for Children and Young People with Asthma: Phase one Version 1, September 2021

- Environmental impacts
- Accurate and early diagnosis
- Effective preventative medicine
- Managing exacerbations
- Severe asthma

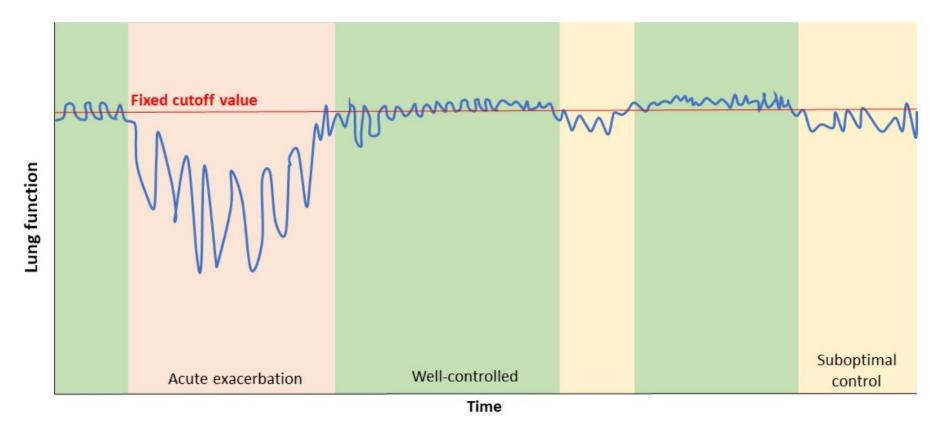
National Bundle of Care for Children and Young People with Asthma: Phase one Version 1, September 2021

- Environmental impacts
- Accurate and early diagnosis
- Effective preventative medicine
- Managing exacerbations
- Severe asthma

Accurate and early diagnosis

- Why is this challenging?
 - A diagnosis of asthma is made on:
 - clinical history of characteristic symptoms that vary over time and in severity
 - supported by objective tests demonstrating variable expiratory airflow limitation and/or airway inflammation
 - No single gold-standard test for asthma
 - Many other respiratory conditions can mimic asthma
 - Chronic disease with variable symptoms/test results (spirometry, BDR) FeNO)
 - over time
 - in response to exposures
 - with (ICS-containing) treatment

Accurate and early diagnosis

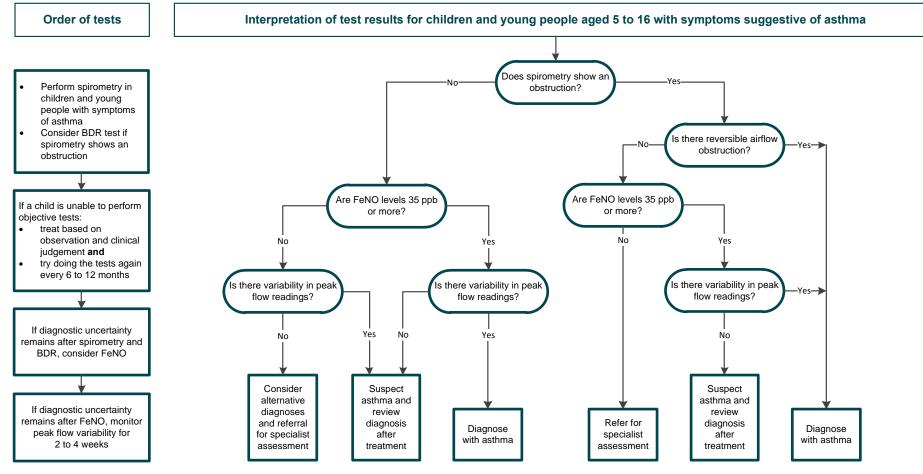

- Why is this so important?
 - Under- and over-diagnosis of asthma is common

Under-diagnosis	Over-diagnosis
Delayed treatment initiation	Exposure to unnecessary medications
Delayed patient/carer education	Risk of medication side-effects
Excess morbidity and poor quality of life	Risk of alternative diagnoses being missed
High risk of asthma attacks	Inappropriate healthcare costs
Persistent airway inflammation/airway remodeling/impaired lung function growth	

Diagnostic pathways

- Different recommendations in NICE (2017) and BTS/SIGN (2019)
 - Greater emphasis on objective testing in NICE guidance: spirometry/FeNO
- ERS (2021) diagnostic pathway
 - Emphasis on objective testing (spirometry/FeNO)
- GINA 2024
 - Emphasis on objective testing where available (spirometry/Peak Expiratory Flow variability second line)
 - Recommendations on steps to establish diagnosis when no objective testing done initially or test results (on treatment) are normal

Asthma: variability in lung function with time


Well-controlled period: characterised by better lung function and less diurnal variability. However, diurnal variation may straddle diagnostic cut offs in some patients.

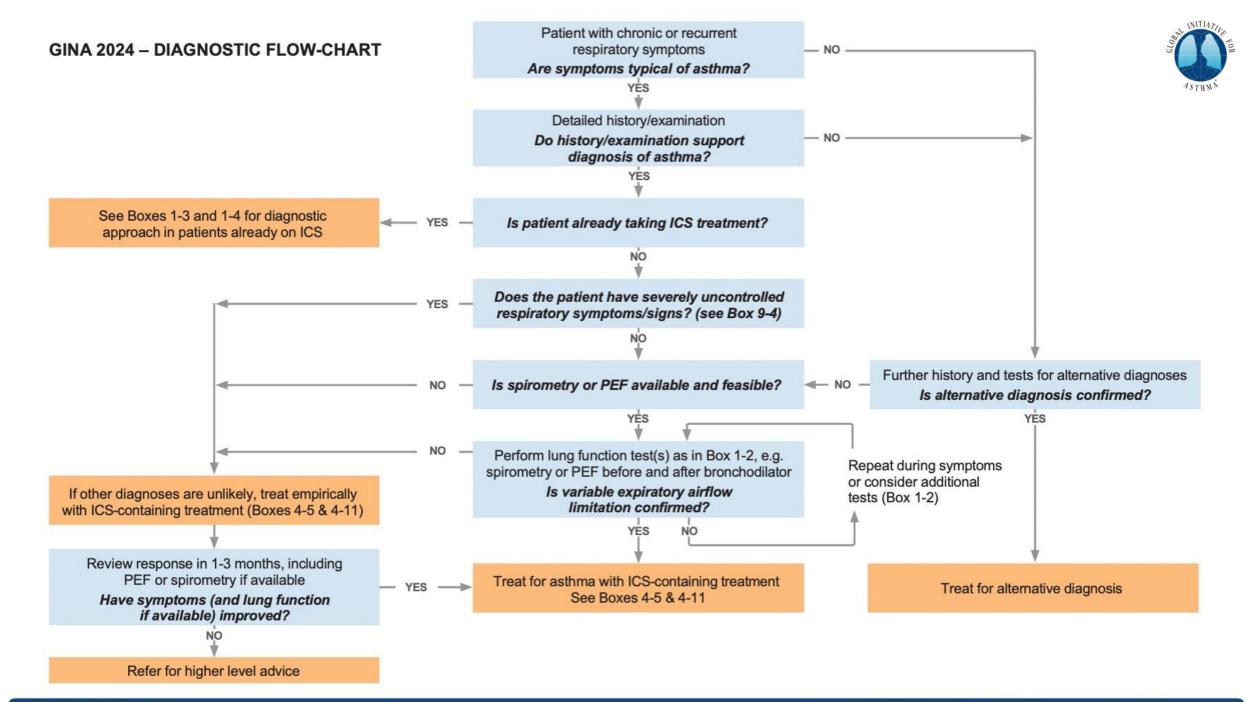
Period of suboptimal control: may be predictable in individual patients based on the triggers, such as cold weather or during pollen seasons.

Acute exacerbation: characterised by marked deterioration in lung function and exaggerated diurnal variability

Wang R, et al. *Thorax* 2021

Algorithm B Objective tests for asthma in children and young people aged 5 to 16

Abbreviations:


FeNO, fractional exhaled nitric oxide BDR, bronchodilator reversibility

Positive test thresholds

This algorithm is based on recommendations from NICE's guideline on <u>asthma: diagnosis, monitoring and</u> <u>chronic asthma management</u> (2017) Obstructive spirometry: FEV1/FVC ratio less than 70% (or below the lower limit of normal if available) FeNO: 35 ppb or more BDR: improvement in FEV1 of 12% or more Peak flow variability: variability over 20%

© NICE 2017. All rights reserved. Subject to Notice of rights.

GINA 2024 Box 1-1

© Global Initiative for Asthma, www.ginasthma.org

Steps to confirm a suspected diagnosis

- Patient already taking ICS-containing treatment and variable airflow limitation has not been confirmed
 - Review the history do the symptoms remain typical of asthma?
 - If yes:
 - Consider repeat spirometry (withholding SABA 4 hrs, LABA 24-48 hrs)
 - Assess between-visit FEV₁ variability and bronchodilator responsiveness
 - Consider stepping down ICS-containing treatment and review with repeat spirometry + bronchial responsiveness testing after 2-4 wks
 - Consider referral +/- bronchial provocation tests
 - Are the symptoms suggestive of an alternative diagnosis?
 - Investigate/refer as needed

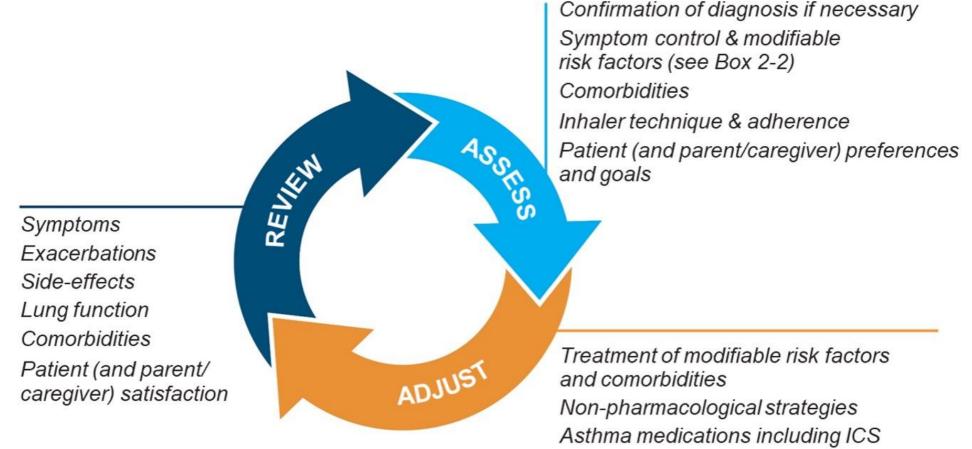
Accurate and early diagnosis

Key messages

- Ask: is the diagnosis supported by objective assessments?
 - If not, revisit
 - consider effect of treatment on test results
- Asthma is characterized by disease variability
 - repeat testing if clinical suspicion persists (spirometry, BDR, FeNO)
- Interpret test results in clinical context
 - be cautious of binary cut-off values for continuous variables (e.g. FeNO)

Requirements

- Clear evidence-based diagnostic pathways
- Access to objective tests
 - Diagnostic hubs
 - Equipment and resources appropriate for CYP
 - Training
 - Clear referral criteria access to secondary + tertiary asthma services


Effective preventative medicine

- Aims of asthma treatment
 - Achieve symptom control
 - No daytime or night-time symptoms
 - No limitation to activity/exercise
 - No requirement for rescue medication
 - Normal lung function
 - Reduce risk of:
 - Asthma attacks
 - Low lung function trajectories
 - Adverse effects from medication

Assessing symptom control alone does not address risk. People with minimal symptoms can have severe asthma attacks

Asthma treatment is not 'set and forget', and not just medications

Education & skills training, action plan

GINA 2024 Box 3-3

© Global Initiative for Asthma, www.ginasthma.org

Pharmacological treatment update

- Shift in asthma treatment recommendations since 2019
 - Treatment with short-acting β_2 -agonists (SABA) only not recommended
 - Inhaled corticosteroid (ICS)-containing treatment recommended from step 1
 - symptom-driven in mild asthma
 - Daily in moderate-severe asthma
- Based on
 - Safety concerns with SABA-only treatment
 - Strong evidence for ICS reducing exacerbation risk

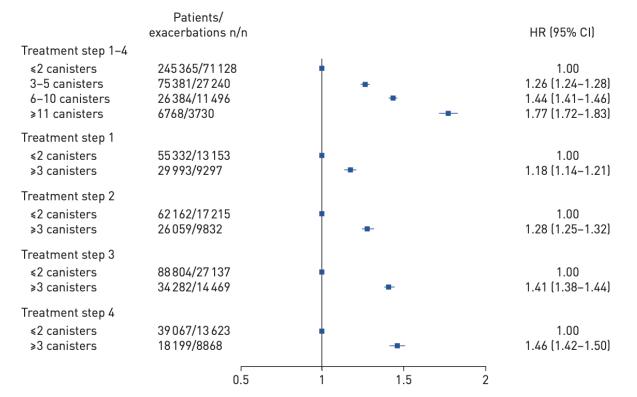
Why asthma still kills The National Review of Asthma Deaths (NRAD)

Confidential Enquiry report May 2014

Commissioned by:

Asthma deaths in England & Wales Feb 2012-Feb 2013

- 195 deaths reviewed
- 28 deaths in people < 19 years


Important features in those who died

- 57% treated for 'mild' or 'moderate' asthma
- 80% inadequate preventer (ICS) prescribing
- 39% >12 SABA inhalers in preceding year
- 2/3 persisting exacerbating factors/contributors
- 47%: history of previous asthma admission

Safety concerns with SABA overuse

- Excess SABA use associated with higher exacerbation risk
- Toxicity from SABA overuse
 - Increased airway hyperresponsiveness
 - Reduced bronchodilator effect

 Inconsistent messaging that SABA reliance represents appropriate asthma treatment

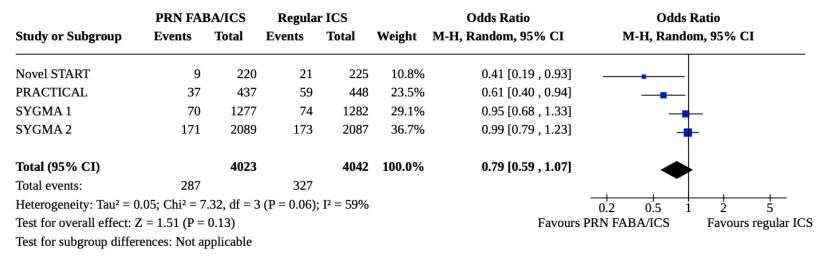
Nwaru BI, et al. Eur Respir J 2020

Evidence for ICS treatment from step 1

- Large RCTs of regular low-dose ICS in adults and children (≥5 yr) with mild asthma
 - Reduction in severe asthma exacerbations by 50%
 - Improvement in daily asthma symptoms and quality of life

O'Byrne PM, et al. Am J Respir Crit Care Med 2001

Pauwels RA, et al. Lancet 2003

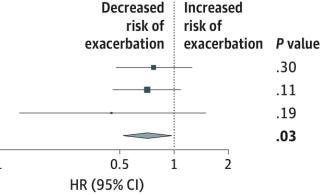

- Large studies of anti-inflammatory reliever (AIR) therapy, either as needed or as part of maintenance-and-reliever therapy (MART)
 - ICS-formoterol
 - ICS-SABA

AIR as needed (adult and adolescent data)

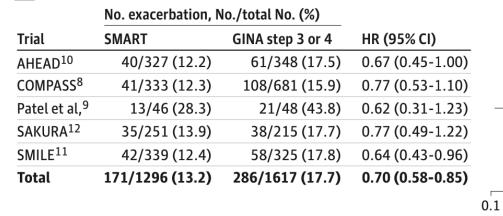
55% reduction in severe exacerbations compared with SABA alone

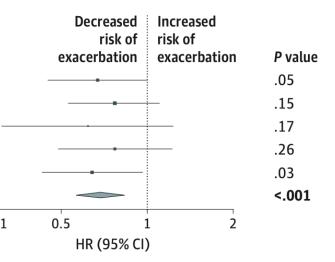
	PRN FAI	BA/ICS	PRN F	ABA		Odds Ratio	Odds R	atio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Randon	n, 95% CI
Novel START	9	220	23	223	12.3%	0.37 [0.17 , 0.82]		
SYGMA 1 (1)	70	1277	141	1277	87.7%	0.47 [0.35 , 0.63]		
Total (95% CI)		1497		1500	100.0%	0.45 [0.34 , 0.60]	•	
Total events:	79		164				•	
Heterogeneity: Tau ² = 0	0.00; Chi ² = 0	.28, df = 1	(P = 0.59)	; I ² = 0%		0.01	0.1 1	10 100
Test for overall effect: 2	Z = 5.55 (P <	0.00001)				Favours PR	N FABA/ICS	Favours PRN FABA
Test for subgroup different	rences: Not a	pplicable						

No sig difference in severe exacerbation rate compared to daily ICS + as needed SABA



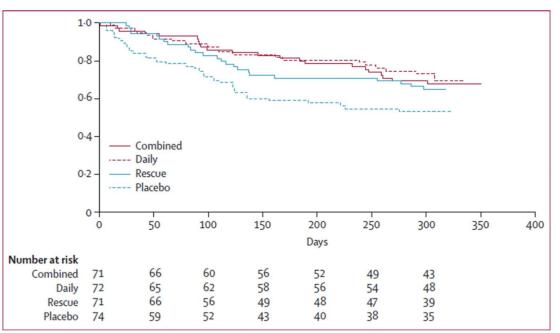
Crossingham I, et al. Cochrane 2021

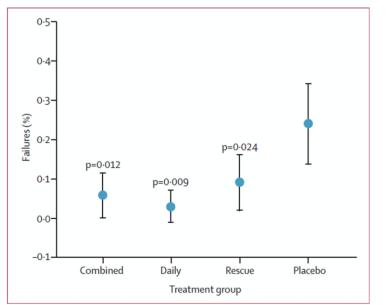

AIR as part of MART (adult/adolescent data)


In patients with poorly controlled asthma, MART compared to GINA step 4 therapy associated with a 29% reduced risk of severe exacerbation

	No. exacerbation	, No./total No. (%)		
Trial	SMART	GINA step 4	HR (95% CI)	
AHEAD ¹⁰	29/371 (7.8)	38/373 (10.2)	0.77 (0.48-1.25)	
COMPASS ⁸	29/372 (7.8)	84/774 (10.9)	0.71 (0.46-1.08)	
Patel et al, ⁹	5/38 (13.2)	6/22 (27.3)	0.45 (0.14-1.49)	-
Total	63/781 (8.1)	128/1169 (10.9)	0.71 (0.52-0.97)	

B SMART vs same GINA step 3 or 4





Beasley R, et al. JAMA Network Open 2022

AIR as needed (paediatric data)

- RCT in children (5-18 yr) with mild asthma, comparing:
 - ICS maintenance + combined (ICS+SABA) reliever
 - ICS maintenance + SABA-only reliever
 - Placebo maintenance + combined (ICS+SABA) reliever
 - Placebo maintenance + SABA-only reliever
- Exacerbation frequency lower in ICS treatment groups vs. placebo
- Treatment failure lower in all ICS treatment group vs. placebo

Martinez F, et al. Lancet 2011

AIR as part of MART (paediatric data)

- Limited evidence in children <12 yrs
- RCT in children 4-11 yrs with asthma uncontrolled on ICS, comparing
 - Budesonide/formoterol 80/4.5mcg once daily + as reliever (MART)
 - Budesonide/formoterol 80/4.5mcg once daily + SABA reliever
 - Budesonide 320mcg once daily + SABA reliever
- Exacerbation rate reduced in MART group by 70 to 79% vs fixed-dose budesonide and fixed-dose combination

Low, medium and high doses of ICS

Inhaled corticosteroid (alone or in combination with LABA)	Total daily ICS dose (mcg) – see notes above			
	Low	Medium	High	
Adults and adolescents (12 years and older)				
Beclometasone dipropionate (pMDI, standard particle, HFA)	200-500	>500-1000	>1000	
Beclometasone dipropionate (DPI or pMDI, extrafine particle, HFA)	100-200	>200-400	>400	
Budesonide (DPI, or pMDI, standard particle, HFA)	200-400	>400-800	>800	
Ciclesonide (pMDI, extrafine particle, HFA)	80-160	>160-320	>320	
Fluticasone furoate (DPI)		100	200	
Fluticasone propionate (DPI)	100-250	>250-500	>500	
Fluticasone propionate (pMDI, standard particle, HFA)	100-250	>250-500	>500	
Mometasone furoate (DPI)	Depends on DPI device – see produce information			
Mometasone furoate (pMDI, standard particle, HFA)	20	0-400	>400	
Children 6-11 years - see notes above (for children 5 years and you	unger, see Box	(11-3, p.191		
Beclometasone dipropionate (pMDI, standard particle, HFA)	100-200	>200-400	>400	
Beclometasone dipropionate (pMDI, extrafine particle, HFA)	50-100	>100-200	>200	
Budesonide (DPI, or pMDI, standard particle, HFA)	100-200	>200-400	>400	
Budesonide (nebules)	250-500	>500-1000	>1000	
Ciclesonide (pMDI, extrafine particle*, HFA)	80	>80-160	>160	
Fluticasone furoate (DPI)		50	n.a.	
Fluticasone propionate (DPI)	50-100	>100-200	>200	
Fluticasone propionate (pMDI, standard particle, HFA)	50-100	>100-200	>200	
Mometasone furoate (pMDI, standard particle, HFA)		100	200	

- This is a table of low, medium and high doses of various ICS
- It does NOT imply equivalent potency
- For example, if you switch a patient from a 'medium' dose of one ICS to a 'medium' dose of another ICS, this may represent a *decrease* in potency, so their asthma may worsen, or it might represent an *increase* in potency and the patient may experience more adverse effects
- Always monitor patients after any change in medication, dose or device, to ensure they are stable

GINA 2024 – Adults & adolescents 12+ years

Personalized asthma management Assess, Adjust, Review for individual patient needs

Confirmation of diagnosis if necessary Symptom control & modifiable risk factors (see Box 2-2) Comorbidities Inhaler technique & adherence Patient preferences and goals

Treatment of modifiable risk factors and comorbidities Non-pharmacological strategies Asthma medications including ICS (as below) Education & skills training

STEP 4

Medium dose

to high dose ICS-only

STEP 3 TRACK 1: PREFERRED CONTROLLER and **RELIEVER STEPS 1 - 2** As-needed-only low dose ICS-formoterol

of phenotype. Consider maintenance Low dose high dose maintenance **ICS**-formoterol Using ICS-formoterol as the maintenance ICS-formoterol. **ICS**-formoterol reliever* reduces the risk of ± anti-IgE, anti-IL5/5R, exacerbations compared with anti-IL4Ra, anti-TSLP using a SABA reliever, and is a RELIEVER: As-needed low-dose ICS-formoterol* simpler regimen **STEP 5** Add-on LAMA **STEP 4** Refer for assessment **STEP 3** Medium/high dose of phenotype. Consider maintenance **STEP 2** Low dose high dose maintenance **TRACK 2:** Alternative **ICS-LABA STEP 1** maintenance ICS-LABA, ± anti-IgE, **CONTROLLER** and **RELIEVER** Low dose **ICS-LABA** Take ICS whenever anti-IL5/5R. anti-IL4Ra. Before considering a regimen maintenance ICS SABA taken* anti-TSLP with SABA reliever, check if the patient is likely to adhere to daily RELIEVER: As-needed ICS-SABA*, or as-needed SABA controller treatment Add azithromycin (adults) or Other controller options (limited Add LAMA or add LTRA[†] Medium dose ICS, or Low dose ICS whenever SABA taken*. add LTRA[†]. As last resort indications, or less evidence for or add HDM SLIT. or switch add LTRA[†], or add consider adding low dose or daily LTRA[†], or add HDM SLIT

HDM SLIT

ADJUST

REVIEW

Symptoms Exacerbations Side-effects

Lung function

Comorbidities

Patient satisfaction

*Anti-inflammatory reliever; †advise about risk of neuropsychiatric adverse effects

See GINA severe asthma guide

© Global Initiative for Asthma, www.ginasthma.org

OCS but consider side-effects

STEP 5

Add-on LAMA

Refer for assessment

GINA 2024 Box 4-6

efficacy or safety - see text)

GINA 2024 – Children 6–11 years

Personalized asthm Assess, Adjust, Review	-	Symptom control & modifiable risk factors (see Box 2-2) Comorbidities Inhaler technique & adherence Child and parent/caregiver preferences and goals Treatment of modifiable risk factors & comorbidities Non-pharmacological strategies Asthma medications including ICS Education & skills training			
Asthma medication Adjust treatment up and individual child's needs PREFERRED CONTROLLER to prevent exacerbations and control symptoms		STEP 2 Daily low dose inhaled corticosteroid (ICS) (see table of ICS dose ranges for children)	STEP 3 Low dose ICS-LABA, OR medium dose ICS, OR very low dose ICS-formoterol maintenance and reliever therapy (MART)	STEP 4 Refer for expert advice, OR medium dose ICS-LABA, OR low dose ICS-formoterol maintenance and reliever therapy (MART)	phenotypic assessment ± higher dose ICS-LABA or add-on therapy, e.g. anti-IgE, anti-IL4Rα, anti-IL5
Other controller options (limited indications, or less evidence for efficacy or safety)		Daily leukotriene receptor antagonist (LTRA†), or low dose ICS taken whenever SABA taken*	Low dose ICS + LTRA†	Add tiotropium or add LTRA [†]	As last resort, consider add-on low dose OCS, but consider side-effects
RELIEVER		As-needed SABA (or ICS-for	rmoterol reliever* in MART	in Steps 3 and 4)	

Confirmation of diagnosis if necessary

*Anti-inflammatory reliever; †advise about risk of neuropsychiatric adverse effects

© Global Initiative for Asthma, www.ginasthma.org

Which formulations and doses of ICS-formoterol can be used as anti-inflammatory relievers in AIR-only or MART?

Budesonide-formoterol

- Adults and adolescents: 200/6 mcg metered dose [160/4.5 delivered dose] by DPI or pMDI, 1 inhalation per dose*
- Children 6–11 years: 100/6 mcg metered dose [80/4.5 delivered dose] by DPI or pMDI, 1 inhalation per dose*

Beclometasone-formoterol

- Adults: 100/6 mcg metered dose by DPI or pMDI, 1 inhalation per dose; no data in adolescents or children to date
- Use of higher or lower dose formulations than these is not recommended*
- The maximum total dose of formoterol in any one day (reliever plus maintenance doses, if used) with any formulation is 72 mcg [54 mcg delivered dose] for adults/adolescents, and 48 mcg [36 mcg delivered dose] for children 6–11 years
- ICS-formoterol is the only ICS-LABA that can be used as an anti-inflammatory reliever

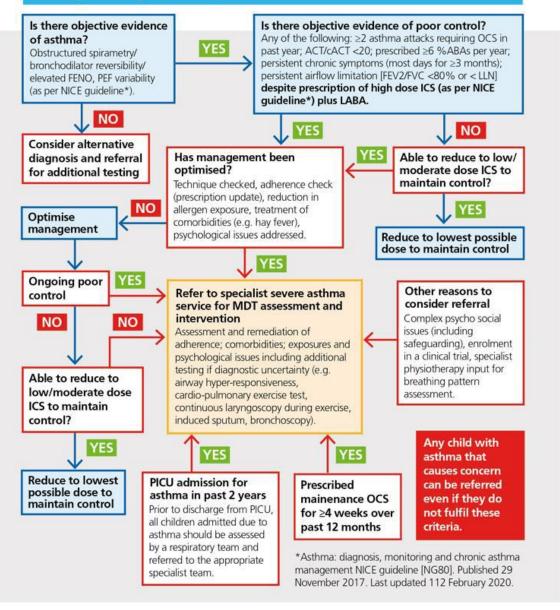
*In some countries, a budesonide-formoterol pMDI with 100/3 [80/2.25] mcg per actuation is available for adults and adolescents, and a pMDI with 50/3 mcg [40/2.25] per actuation is available for children. For these pMDIs, the recommended number of inhalations is double that for the formulations above.

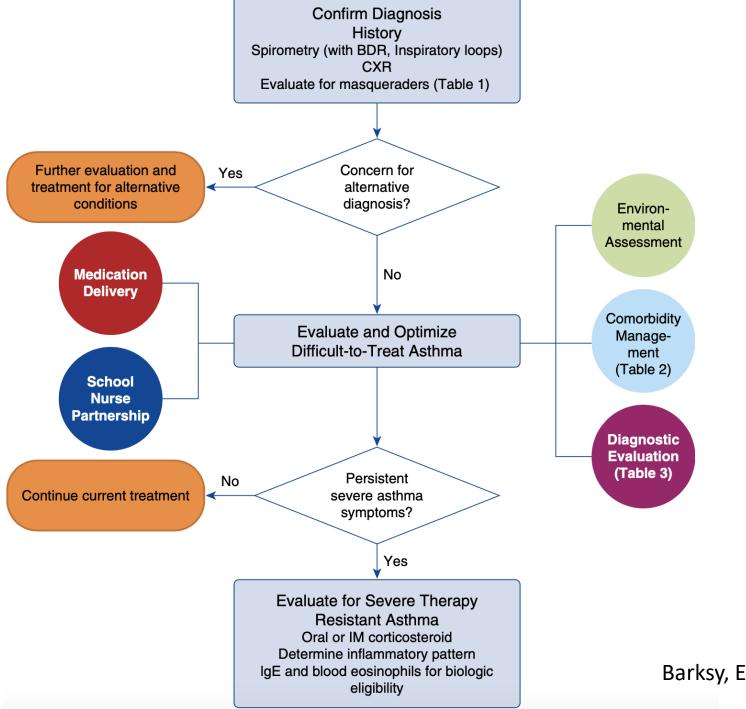
AIR: anti-inflammatory reliever; BDP: beclometasone dipropionate; DPI: dry powder inhaler; MART: maintenance and reliever therapy with ICS-formoterol; pMDI: pressurized metered dose inhaler

See GINA 2024 Box 4-8 for more details

MART for children 6–11 years: medications and doses

- MART is an option for this agegroup in Steps 3 and 4
- Recommended doses: budesonide-formoterol 100/6 mcg [80/4.5 mcg delivered dose] DPI or pMDI
 - Step 3: 1 inhalation once daily plus 1 inhalation as needed*
 - Step 4: 1 inhalation twice daily plus 1 inhalation as needed*
- Evidence for MART to date in children is with budesonide-formoterol 100/6 [80/4.5] DPI
 - In children 4–11 years with a history of at least one exacerbation, MART 100/6 [80/4.5] mcg 1 inhalation once daily plus 1 inhalation as needed reduced severe exacerbations compared with the same dose of budesonide-formoterol or with 4 times the dose of ICS alone, plus SABA reliever (O'Byrne 2005; Bisgaard 2006)
- Maximum total dose in any one day (maintenance and reliever doses)
 - 8 inhalations* of budesonide-formoterol 100/6 mcg [80/4.5 mcg delivered dose]
- Very few patients ever need this much!
- Several RCTs are underway with AIR-only and MART in children
- Do not use ICS-formoterol as the reliever with other maintenance ICS-LABAs


*In some countries, a budesonide-formoterol pMDI with 50/3 [40/2.25] mcg per actuation is available. For this pMDI, the recommended number of inhalations is double that for the 100/6 [80/4.5] mcg formulation above.


Severe asthma

- Poorly controlled symptoms and/or frequent/severe exacerbations despite high dose treatment (GINA step 4)
- Prevalence: 2-3% of children with asthma^{1,2}
 - High vulnerability
 - High treatment burden and risk of adverse effects
 - High health care utilisation
- Requires comprehensive MDT evaluation
- 1. Belgrave D. C. M. et al. JACI 2013
- 2. Nordlund B. et al. Respir Med 2014

Referral criteria

Referral pathway to a specialist (tertiary) severe asthma service: child aged 5-16 years with problematic asthma

Barksy, E. E. et al. AJRCCM 2018

Biologic therapies for severe therapy-resistant asthma

- Anti IgE
 - Omalizumab
- Drugs targeting IL-5
 - Mepolizumab
 - Reslizumab
 - Benralizumab
- Drugs targeting IL-4 and IL-13
 - Dupilumab

• Drugs targeting thymic stromal lymphopoietin (TSLP)

• Tezepelumab

Licensed >12 yrs

Licensed >6 yrs

Licensed >12 yrs

Summary

- Accurate and early diagnosis
 - Ensure diagnosis supported by objective tests
 - When in doubt, revisit
 - When difficult to establish, consider referral
- Effective preventative medicine
 - ICS-containing treatment from step 1
 - Strong evidence for AIR and MART in patients >12 yrs
 - Growing evidence for AIR and MART in younger children
- Severe asthma
 - Poor control/severe attacks/high SABA use/low lung function: refer!

Questions